Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(8): e202300735, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423890

RESUMO

Acetylcholinesterase (AChE) inhibitory activity-guided studies on the mangrove-derived endophytic fungus Penicillium citrinum YX-002 led to the isolation of nine secondary metabolites, including one new quinolinone derivative, quinolactone A (1), a pair of epimers quinolactacin C1 (2) and 3-epi-quinolactacin C1 (3), together with six known analogs (4-9). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses, and compared with data in the literature. The absolute configurations of compounds 1-3 was determined by combination of electronic circular dichroism (ECD) calculations and X-Ray single crystal diffraction technique using CuKα radiation. In bioassays, compounds 1, 4 and 7 showed moderate AChE inhibitory activities with IC50 values of 27.6, 19.4 and 11.2 µmol/L, respectively. The structure-activity relationships (SARs) analysis suggested that the existence of carbonyl group on C-3 and the oxygen atom on the five-membered ring were beneficial to the activity. Molecular docking results showed that compound 7 had a lower affinity interaction energy (-9.3 kcal/mol) with stronger interactions with different sites in AChE activities, which explained its higher activities.


Assuntos
Alcaloides , Penicillium , Estrutura Molecular , Acetilcolinesterase , Simulação de Acoplamento Molecular , Penicillium/química , Alcaloides/química
2.
Front Microbiol ; 14: 1144328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206330

RESUMO

Background: Alkaloids are the second primary class of secondary metabolites (SMs) from marine organisms, most of which have antioxidant, antitumor, antibacterial, anti-inflammatory, and other activities. However, the SMs obtained by traditional isolation strategies have drawbacks such as highly reduplication and weak bioactivity. Therefore, it is significantly important to establish an efficient strategy for screening strains and mining novel compounds. Methods: In this study, we utilized in situ colony assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the strain with high potential in alkaloids production. The strain was identified by genetic marker genes and morphological analysis. The secondary metabolites from the strain were isolated by the combine use of vacuum liquid chromatography (VLC), ODS column chromatography, and Sephadex LH-20. Their structures were elucidated by 1D/2D NMR, HR-ESI-MS, and other spectroscopic technologies. Finally, these compounds bioactivity were assay, including anti-inflammatory and anti-ß aggregation. Results: Eighteen marine fungi were preliminarily screened for alkaloids production by in situ colony assay using Dragendorff reagent as dye, and nine of them turned orange, which indicated abundant alkaloids. By thin-layer chromatography (TLC), LC-MS/MS, and multiple approaches assisted Feature-Based Molecular Networking (FBMN) analysis of fermentation extracts, a strain ACD-5 (Penicillium mallochii with GenBank accession number OM368350) from sea cucumber gut was selected for its diverse alkaloids profiles especially azaphilones. In bioassays, the crude extracts of ACD-5 in Czapek-dox broth and brown rice medium showed moderate antioxidant, acetylcholinesterase inhibitory, anti-neuroinflammatory, and anti-ß aggregation activities. Three chlorinated azaphilone alkaloids, compounds 1-3 (sclerotioramine, isochromophilone VI, and isochromophilone IX, respectively), were isolated from the fermentation products of ACD-5 in brown rice medium guided by bioactivities and mass spectrometry analysis. Compound 1 had shown remarkable anti-neuroinflammatory activity in liposaccharide induced BV-2 cells. Conclusion: In summary, in situ colony screening together with LC-MS/MS, multi-approach assisted FBMN can act as an efficient screening method for strains with potential in alkaloids production.

3.
Chem Biodivers ; 19(8): e202200491, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35707944

RESUMO

Chemical investigation of the endophytic fungus Phomopsis asparagi LSLYZ-87 cultured on PDB medium led to the isolation of two new pyrone derivatives, phomasparapyrone A (1), and phomasparapyrone B (2), together with the known kojic acid (3). Their planar structures were connected through 1D and 2D NMR spectroscopic data. And the stereo structures of 1 and 2 were defined by comparison of the experimental ECD spectra to calculated one. All isolates were evaluated for their anti-neuroinflammatory activities. Among them, compound 2 showed moderate inhibition on NO accumulation induced by LPS on BV-2 cells in a dose dependent manner at 30, 40 and 50 µM, and without cytotoxicity in a concentration of 50.0 µM.


Assuntos
Fungos , Pironas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Phomopsis , Pironas/química , Pironas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...